2,396 research outputs found

    A dynamical symmetry breaking model in Weyl space

    Get PDF
    The dynamical process following the breaking of Weyl geometry to Riemannian geometry is considered by studying the motion of de Sitter bubbles in a Weyl vacuum. The bubbles are given in terms of an exact, spherically symmetric thin shell solution to the Einstein equations in a Weyl-Dirac theory with a time-dependent scalar field of the form beta = f(t)/r. The dynamical solutions obtained lead to a number of possible applications. An important feature of the thin shell model is the manner in which beta provides a connection between the interior and exterior geometries since information about the exterior geometry is contained in the boundary conditions for beta.Comment: 18 pages, RevTex, to be published in J. Math. Phy

    Maximal Acceleration Effects in Kerr Space

    Get PDF
    We consider a model in which accelerated particles experience line--elements with maximal acceleration corrections that are introduced by means of successive approximations. It is shown that approximations higher than the first need not be considered. The method is then applied to the Kerr metric. The effective field experienced by accelerated test particles contains corrections that vanish in the limit ℏ→0\hbar\to 0, but otherwise affect the behaviour of matter greatly. The corrections generate potential barriers that are external to the horizon and are impervious to classical particles.Comment: 16 pages, 10 figures, to appear on Phys. Lett.

    Activation of MHD reconnection on ideal timescales

    Full text link
    Magnetic reconnection in laboratory, space and astrophysical plasmas is often invoked to explain explosive energy release and particle acceleration. However, the timescales involved in classical models within the macroscopic MHD regime are far too slow to match the observations. Here we revisit the tearing instability by performing visco-resistive two-dimensional numerical simulations of the evolution of thin current sheets, for a variety of initial configurations and of values of the Lunquist number SS, up to 10710^7. Results confirm that when the critical aspect ratio of S1/3S^{1/3} is reached in the reconnecting current sheets, the instability proceeds on ideal (Alfv\'enic) macroscopic timescales, as required to explain observations. Moreover, the same scaling is seen to apply also to the local, secondary reconnection events triggered during the nonlinear phase of the tearing instability, thus accelerating the cascading process to increasingly smaller spatial and temporal scales. The process appears to be robust, as the predicted scaling is measured both in inviscid simulations and when using a Prandtl number P=1P=1 in the viscous regime.Comment: Accepted for publication in Plasma Physics and Controlled Fusio

    Can Gravity Distinguish Between Dirac and Majorana Neutrinos?

    Get PDF
    We show that spin-gravity interaction can distinguish between Dirac and Majorana neutrino wave packets propagating in a Lense-Thirring background. Using time-independent perturbation theory and gravitational phase to generate a perturbation Hamiltonian with spin-gravity coupling, we show that the associated matrix element for the Majorana neutrino differs significantly from its Dirac counterpart. This difference can be demonstrated through significant gravitational corrections to the neutrino oscillation length for a two-flavour system, as shown explicitly for SN1987A.Comment: 4 pages, 2 figures; minor changes of text; typo corrected; accepted in Physical Review Letter

    Transport, Industrial and Commercial Refrigeration – A research project

    Get PDF
    The Climate Change Act commits the UK to reach net zero emissions by 2050, tackling hard to abate areas. A significant energy end use, often overlooked in policy, is refrigeration and there is a gap in our understanding of transport, industrial and commercial refrigeration (TICR) emissions. Essential for multiple applications across the cold chain, this paper assesses the size of TICR emissions, and opportunities for research and innovation. Our initial results suggest that 6% of industrial electricity use is for refrigeration, with large uncertainty in this figure. To address this knowledge gap, we reviewed available data sources to estimate the UK’s carbon emissions and produce a breakdown per application sector. In an industry dominated by SMEs with low-risk appetite and innovations with low readiness levels, we explore ways, which TICR could decarbonise in order to reach the UK’s Net Zero ambitions, through innovation and better data

    Unbounded Solutions to Systems of Differential Equations at Resonance

    Get PDF
    We deal with a weakly coupled system of ODEs of the type xj\u2032\u2032+nj2xj+hj(x1,\u2026,xd)=pj(t),j=1,\u2026,d,with hj locally Lipschitz continuous and bounded, pj continuous and 2 \u3c0-periodic, nj 08 N (so that the system is at resonance). By means of a Lyapunov function approach for discrete dynamical systems, we prove the existence of unbounded solutions, when either global or asymptotic conditions on the coupling terms h1, \u2026 , hd are assumed

    Orographic Precipitation Extremes: An Application of LUME (Linear Upslope Model Extension) over the Alps and Apennines in Italy

    Get PDF
    Critical hydrometeorological events are generally triggered by heavy precipitation. In complex terrain, precipitation may be perturbed by the upslope raising of the incoming humid airflow, causing in some cases extreme rainfall. In this work, the application of LUME-Linear Upslope Model Extension-to a group of extreme events that occurred across mountainous areas of the Central Alps and Apennines in Italy is presented. Based on the previous version, the model has been "extended" in some aspects, proposing a methodology for physically estimating the time-delay coefficients as a function of precipitation efficiency. The outcomes of LUME are encouraging for the cases studied, revealing the intensification of precipitation due to the orographic effect. A comparison between the reference rain gauge data and the results of the simulations showed good agreement. Since extreme precipitation is expected to increase due to climate change, especially across the Mediterranean region, LUME represents an effective tool to investigate more closely how these extreme phenomena originate and evolve in mountainous areas that are subject to potential hydrometeorological risks

    Thin shell quantization in Weyl spacetime

    Get PDF
    We study the problem of quantization of thin shells in a Weyl-Dirac theory by deriving a Wheeler-DeWitt equation from the dynamics. Solutions are found which have interpretations in both cosmology and particle physics
    • …
    corecore